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Abstract

Pressure gradients act di�erently on liquid particles and suspended bubbles and are, therefore, capable of inducing
a relative motion between the phases even when no relative velocity initially exists. As a consequence of the

enhanced heat transfer in the presence of convection, this fact may have a major impact on the evolution of a vapor
bubble. The e�ect is particularly strong in the case of a collapsing bubble for which, due to the conservation of the
system's impulse, the induced relative velocity tends to be magni®ed when the bubble volume shrinks. A practical

application could be, for instance, the enhancement of the condensation rate of bubbles downstream of a heated
region, thereby reducing the quality of a ¯owing liquid±vapor mixture. A simple model of the process, in which the
bubble is assumed to be spherical and the ¯ow potential, is developed in the paper. 7 2000 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

It has long been appreciated that convection has a

major e�ect on the heat transfer processes that lead to

the growth or collapse of vapor bubbles in a liquid [1±

9]. In most of the previous studies devoted to this pro-

blem, the relative velocity between the bubble and the

liquid was either held constant or allowed to respond

to buoyancy according to the instantaneous bubble

volume. While both models are relevant for situations

of pool boiling, they are less applicable to many cases
of ¯ow boiling in which the pressure gradient that is
responsible for the ¯ow acts di�erently on the bubble

and the liquid, with the consequence that a relative
motion between the two develops. This relative motion
can be responsible for a variety of intriguing e�ects
with an ultimate bearing on the bubble growth or col-

lapse. These processes are of even greater importance
under microgravity conditions in which an imposed
¯ow is often the only means available for bubble man-

agement.
In the present paper, we discuss a simpli®ed model

of such a process. We assume the bubble to remain

spherical allowing it to adjust its velocity relative to
the liquid according to the local pressure gradient.
Added mass e�ects, of course, feature prominently in

these phenomena as, for example, a small relative vel-
ocity acquired under the action of the pressure gradi-
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ent that can be signi®cantly ampli®ed in the course of

the collapse. In turn, the greater heat transfer due to
this increased convection will promote a faster col-
lapse. This phenomenon may ®nd a useful practical ap-
plication in enhancing the condensation rate of

bubbles downstream of a boiling region.
Translating bubbles were the object of considerable

interest up to the early 70s, when some experimental

data and quite a number of approximate analytical
studies and numerical computations were published. In
recent times, there has been a resurgence of interest in

the topic due to the availability of better numerical
and experimental methods (see, e.g., Refs. [10,11]).
Legendre et al. [11] present a very detailed study of the

heat transfer processes around a variable-radius, trans-
lating spherical bubble. They solve the complete
Navier±Stokes equations, rather than using a potential
¯ow approximation as given here. However, they

assume the translational velocity to be a constant.
Reference [12] studies the response of a translating
bubble to a time-varying pressure, and is therefore

di�erent from the present one which focuses on a
spatially-varying pressure and the attendant ``virtual
buoyancy'' e�ect on the bubble. Reference [10] pre-

sents data on the departure of vapor bubbles injected

in a subcooled liquid through the base of the container

and their subsequent collapse. Due to the experimental
requirements of holography, these bubbles are rela-
tively large and signi®cantly distorted and, therefore,
rather di�erent from the ones studied here. A large

number of studies have been devoted to the growth
and detachment of bubbles in pool boiling or on a
wall exposed to a ¯ow (for recent representative

examples, see, e.g., Refs. [13±15]). Again, this situation
is di�erent from the present one, in which we envisage
a bubble that is convected by the ¯ow in a region of

spatially non-uniform pressure, and follow the sub-
sequent motion and heat transfer processes.
The assumption of sphericity, although quite com-

mon in the literature, is, of course, questionable par-
ticularly in the case of rapid condensation in which
conservation of the liquid impulse forces the formation
of jet traversing the bubble in the direction of motion

[16,17]. This circumstance invalidates our predictions
in the last stages of the collapse. Nevertheless, in a
liquid like water, millimeter-size bubbles are fairly

spherical due to surface tension e�ects, and even if the
later details of the motion are incorrect, one may
expect that the trends that we ®nd would be represen-

tative of real phenomena.

Nomenclature

A cross-sectional area
c speed of sound in liquid
CD drag coe�cient

cp speci®c heat at constant pressure
cs vapor speci®c heat along the saturation line
D thermal di�usivity

Ja � rLcL�TsatÿT1�=rV;satL, Jacob number
k liquid thermal conductivity
` length scale of the pressure distribution, Eq.

(14)
L latent heat
pb liquid pressure at the bubble surface
P ambient liquid pressure

Pe � 2UBR�0�=D, PeÂ clet number
PN Legendre polynomial
r radial coordinate measured from the bubble

center
R bubble radius
Re Reynolds number

SN coe�cients in the temperature expansion (17)
tc � pR 2�0�=4Ja 2D, characteristic time
TL liquid temperature

TS liquid temperature at the bubble surface
T2K Chebyshev polynomials
u liquid local velocity around the bubble

UB bubble translational velocity
UL liquid velocity
VR translational velocity of the bubble relative to

the liquid
We � rLV

2
RR�0�=s, Weber number

x polar axis, direction of motion of the bubble

z auxiliary spatial variable de®ned in Eq. (23)

Greek symbols

a parameter in the velocity and pressure distri-
butions, Eq. (14)

d parameter for the initial temperature distri-
bution, Eq. (26)

y polar angle measured from the direction of the
relative velocity of the bubble

m liquid viscosity

r density
s surface tension coe�cient
t characteristic time

Subscripts
L liquid quantity

sat evaluated according to the saturation relation
V vapor quantity
1 evaluated far upstream

Y. Hao, A. Prosperetti / Int. J. Heat Mass Transfer 43 (2000) 3539±35503540



2. Mathematical formulation

With the assumption of a spherical shape, the vapor
volume is simply characterized by its time-dependent
radius R�t�, the evolution of which is governed by Kel-

ler's equation�
1ÿ

_R

c

�
R �R� 3

2

�
1ÿ

_R

3c

�
_R
2

� 1

rL

�
1�

_R

c
� R

c

d

dt

�
�pb ÿ P�: �1�

Here dots denote time derivatives, rL is the liquid den-

sity, pb is the liquid pressure at the bubble surface, and
P is the ambient pressure which, for the present pur-
pose, can be regarded as the pressure at the location of
the bubble in the absence of the bubble. In Eq. (1), the

terms divided by the liquid speed of sound c represent
a ®rst-order correction for the e�ects of liquid com-
pressibility. A case could be made for augmenting the

pressure P by the liquid pressure averaged over the
surface of the bubble, ÿ�1=4�rLV

2
R, where VR is the

relative velocity (see, e.g., Refs. [18,19]), but the e�ect

is negligible for the situations considered here and is
disregarded.
The bubble internal pressure is strongly dependent

on the surface temperature that must be determined by
solving the liquid energy equation

@TL

@ t
� u � rTL � DLr 2TL, �2�

where TL is the liquid temperature and DL the liquid
thermal di�usivity; u is the liquid velocity ®eld in the
bubble rest frame. This Eq. (2) should be solved sub-
ject to the condition that, at r � R�t�, the liquid tem-

perature equals the local bubble surface temperature
TS. In principle, it would be necessary to allow for sur-
face temperature non-uniformities, but it is well known

that such e�ects are very small due to the rapidity with
which local processes of evaporation and condensation
can erase such temperature di�erences. Hence, we

assume that TS is uniform over the bubble surface.
The approximation of a spatially uniform pressure in
the bubble is well justi®ed when, as here, the vapor vel-
ocity is small with respect to the speed of sound [20].

Since, under the same conditions, the phase change
processes occurring at the interface are slow enough
for thermodynamic equilibrium conditions to prevail

(see, e.g., Ref. [21]), the bubble internal pressure can
be taken equal to the saturation pressure psat�TS� at the
instantaneous bubble surface temperature TS. The

liquid pressure just outside the bubble surface, pb, is
therefore related to the bubble internal pressure by the
normal stress condition

psat�TS � � pb � 2s
R
� 4mL

_R

R
, �3�

where s is the surface tension coe�cient and mL the
liquid viscosity. It is well known that viscous e�ects

vanish identically in the momentum equation of an
incompressible ¯uid in irrotational motion even when,
as here, they give a non-zero contribution to the nor-

mal stress boundary condition.
A second condition to impose on the solution of the

energy equation is conservation of energy at the

bubble surface which is expressed by

n � �kVrTV ÿ kLrTL � � L _m, �4�

where k is the thermal conductivity, L the latent heat,
_m the local mass ¯ux, and n the unit normal. In a pre-
vious study [22], where we allowed a non-uniform tem-
perature distribution in the vapor under conditions of

spherical symmetry, it was shown that the vapor tem-
perature can be considered approximately uniform
provided that the parameter

���������
DVt
p

=R�0� (where DV is
the vapor thermal di�usivity and t a characteristic

time scale of the problem) is not too small. Here, we
can estimate t by using the time scale introduced in
Ref. [3],

tc � p
4Ja 2

R 2�0�
DL

, �5�

where Ja is the Jacob number de®ned by

Ja � rLcpL�Tsat ÿ T1�
rV, satL

, �6�

with cpL the liquid speci®c heat and Tsat and rV, sat the
saturation values at the ambient pressure P1: Physi-
cally, tc represents the order of magnitude of the time
necessary to condense the bubble. With this choice we

®nd����������
DVtc
p
R�0� �

1

Ja

������������
p
4

DV

DL

r
: �7�

For the liquids we consider DV=DL0102±103 and Ja is
of the order of 10. The condition is then satis®ed and
we deduce that the vapor temperature is very nearly

uniform in the bubble, with the consequence that the
vapor heat ¯ux term in Eq. (4) is negligible. Averaging
over the bubble surface (indicated by an overline), we

can then impose the condition

4pR 2kL
@T

@r

����
r�R�t�
� L

d

dt

�
4

3
pR3rV

�
� 4

3
pR3rVcs

dTS

dt
,

�8�
where cs � cpV ÿ L=TS (with cpV the vapor speci®c heat
at constant pressure) is the thermal heat capacity along
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the saturation line, and rV the saturated vapor density.
The derivation of this equation from the energy

equation in the gas and Eq. (4) is not entirely straight-
forward and is given in full in Ref. [22]. Even though
the last term is often omitted in the literature, as it is

mostly signi®cant only for high rates of change of the
surface temperature (as would prevail in an acoustic
®eld or toward the end of a violent collapse), we retain

it here for greater accuracy.
Non-condensible gases inside the bubble would be

dependent on liquid preparation and the actual exper-

imental conditions, and will be neglected here for sim-
plicity and in order to limit the number of parameters.
With the neglect of viscosity, we approximate the

liquid velocity ®eld by the potential ¯ow around a

translating and collapsing or expanding sphere and
write

u � r
�
ÿ R 2 _R

r
� VRr

�
1� R3

2r3

�
cos y

�
, �9�

where

VR � UB ÿUL, �10�

is the relative velocity of the bubble with respect to the

liquid given by the di�erence of UB and UL, the bubble
and liquid velocities in the laboratory frame. Here, we
assume that the motion is rectilinear,y is the polar

angle measured from the direction of the relative vel-
ocity, and r is the distance from the bubble center. In
order to determine VR, we balance the added mass

force against pressure gradient and drag to ®nd (see,
e.g., Refs. [17,23±26])

1

2
rL

"
4

3
pR3

�
dUB

dt
ÿUL

dUL

dx

�
� VR

d

dt

�
4

3
pR3

�#

� ÿ4
3
pR3 dP

dx
ÿ CDpR 2 1

2
rLjVRjVR: �11�

The terms in the left-hand side are the rate of change
of the system impulse and represent the e�ect of the
added mass interaction. The ®rst term in the right-

hand side (which can equivalently be written in terms
of the liquid acceleration in place of the pressure gradi-
ent on the basis of the momentum equation) is some-
times referred to as ``virtual buoyancy'' because, if

dP=dx is replaced by rLg, one has a standard form of
the equation of motion for a bubble in the gravita-
tional ®eld (see, e.g., Refs. [2,26]). The use of dP=dx to

model the imposed pressure gradient which determines
the ambient ¯ow in which the bubble is immersed is
justi®ed when the characteristic length scale for vari-

ations of P is larger than the bubble radius, which is
not a very stringent assumption. The argument can be
outlined as follows (see, e.g., Ref. [27]). The pressure

®eld surrounding a bubble in a ¯ow can be approxi-
mately subdivided into a component ps with a length

scale comparable with the bubble radius (responsible
for the added mass e�ect), and another component
with a much slower spatial variation. One may vaguely

refer to this quantity as the pressure at the bubble pos-
ition in the absence of the bubble, which provides a
justi®cation for identifying it with the liquid pressure

P. The force on the bubble due to this pressure com-
ponent is

Fp � ÿ
�
S

n � P�x, t� dS, �12�

where the integration is over the bubble surface, with

outward unit normal n. If we set x � xC � r, where xC

is the bubble center, and carry out a Taylor series
expansion of P, we immediately ®nd Fp ' ÿVrP as in

Eq. (11), with V the bubble volume.
The last term in the right-hand side of Eq. (11) rep-

resents the drag force, with a drag coe�cient CD, for

which many di�erent expressions exist in the literature.
Since, here, we use a potential ¯ow approximation, it
is appropriate to take the Levich form as corrected by
Moore [28]

CD � 48

Re

�
1ÿ 2:211

Re0:5

�
, �13�

where the Reynolds number Re equals 2VRRrL=m: The
®rst term is the well-known boundary layer result de-
rived by Levich [29] (see also Ref. [30]), and the second

is term the correction due to Moore. Magnaudet and
Legendre [26] have recently pointed out the limitations
of drag estimates based on the assumption of a con-
stant bubble radius but, at the same time, they show

that the form (13) is fairly accurate at relatively high
Reynolds and Jacob numbers, which are the cases
studied here. In any event, for the cases we consider,

the e�ects of drag are small as we have con®rmed by
using other drag relations and also by setting the drag
to zero. Hence, the precise form of the drag relation

that we use is not a matter of great concern.
The purpose of this paper is to point out the e�ect

of pressure gradients in inducing a relative velocity
between the bubble and the liquid and, therefore, an

increase in the heat exchange rate between the two.
For this purpose, it is useful to have a pressure ®eld
characterized by two parameters, one measuring the

magnitude of the pressure change and the other one
the spatial scale of the pressure variation. To derive
one such parameterization, we form the mental picture

of a uniform ¯ow along the axis of a converging or
diverging duct with a local cross-sectional area given
by
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A�x�
A1
� 1� a tanh�x=`�

1ÿ a
, �14�

with A1, a, ` suitable constants. With the assumption
of quasi-one-dimensional ¯ow, we then have

dP

dx
� ÿrLUL

dUL

dx
: �15�

We stress that we do not intend this to be a model for
the actual behavior of a vapor bubble in a variable-
area duct, for which one should address the possibility

of ¯ow separation when dA=dx > 0, the e�ects of vis-
cosity, turbulence, etc. Rather, this is a convenient
two-parameter pressure ®eld that enables us to point
out a general tendency of bubble±liquid heat exchange

in ¯ows with pressure gradients.
Since the ¯ow in which the bubble is immersed varies

relatively slowly over the spatial scale of the bubble, as

noted before, it is appropriate to take as the ambient
pressure P, appearing in the Keller equation (1), the
value of P given by Eq. (15) evaluated at the position of

the bubble center. Integration of Eq. (15) gives

P � P1 ÿ 1

2
rL

ÿ
U 2

L ÿU 2
1
�
, �16�

where P1, U1 are the liquid pressure and velocity far
upstream of the region where the pressure gradient is ap-
preciable.

3. Numerical method

In order to solve the energy equation (2), we expand
the liquid temperature TL in a Legendre polynomial
series as

TL � T1 �
X1
N�0

SN�r, t�PN�cos y�, �17�

substitute into Eq. (2), and take scalar products with
the generic Legendre polynomial to ®nd

@SN

@ t
� R 2 _R

r 2
@SN

@ r
� VR

�
1ÿ R3

r3

�

�
�

N

2Nÿ 1

@SNÿ1
@ r
� N� 1

2N� 3

@SN�1
@r

�

� 1

r
VR

�
1� R3

2r3

��
ÿ N�Nÿ 1�

2Nÿ 1
SNÿ1

� �N� 1��N� 2�
2N� 3

SN�1

�
� DL

r 2

�
@

@r

�
r 2
@SN

@r

�

ÿN�N� 1�SN

�
:

�18�

In practice, we truncate the expansion (17) to a maxi-
mum number of terms M; the component SM�1 that

would arise in this equation is disregarded. From the
continuity of temperature at the bubble surface, we
deduce

S0�R�t�, t� � TS�t� ÿ T1, SK�R�t�, t� � 0 for

K � 1, 2, . . . ,M:
�19�

The interface energy balance (8) gives instead

4pR 2kL
@S0

@r

����
r�R�t�
� L

d

dt

�
4

3
pR3rV

�
� 4

3
pR3rVCs

dTS

dt
:

�20�

Far from the bubble, we require that T4T1, and
therefore

S04T1, SK40 for K � 1, 2, . . . ,M, �21�

as r41:
Since, for Kr1, SK is required to vanish at the

bubble surface, no condition analogous to Eq. (20) is

required. If needed, the local mass ¯ux at the bubble
surface could be obtained from Eq. (4) and the calcu-
lated values of @SK=@r:
Eq. (18), written for N � 0, 1, . . . ,M, constitute a

system of coupled partial di�erential equations that we
solve by a collocation method which extends the one
used in our previous work [22]. We expand each SN in

a series of Chebyshev polynomials

SN �
XJ
K�0

aNK�t�T2K�z�, �22�

where we have introduced the new spatial variable

z � m

m� rÿ R�t� , �23�

where m � Z
������
Dt
p

is taken to be a multiple Z of the

thermal penetration depth in the liquid
������
Dt
p

: We take
t � tc de®ned in Eq. (5) whenever T1 is not too close
to Tsat�P1�: For the other cases, we adjust t by trial

and error to have an accurate time resolution; the par-
ameter Z is typically taken to be 10. The variable z
maps the domain R�t�Rr <1 exterior to the bubble
to the ®xed domain 1rz > 0: In Eq. (22), we use only

the even Chebyshev polynomials T2K to ensure that
@SN=@ r40 as r41:
For each SN, the expansion (22) is substituted into

Eq. (18) and the resulting expressions evaluated at the
Jÿ 1 collocation points

zj � cos
pj
2J

, j � 1, 2, . . . ,Jÿ 1: �24�
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At r � R�t� (i.e., z � 1, j � 0), we impose the interface
boundary conditions (19) and (20), and for r41 (i.e.,

z � 0, j � J), the conditions (21). In this way, a system
of ordinary di�erential equations su�cient for the de-
termination of the coe�cients aNK�t� is generated.
The validation of the method and a few additional

details can be found in Ref. [22]. For the present
study, we have conducted several preliminary tests to

determine the number of terms su�cient to ensure con-
verged results. We found that retaining eight terms in
the Legendre polynomial expansion (17) and 16±32

terms in the Chebyshev expansion (22) resulted in a
su�cient accuracy, except perhaps in the very last
stages of the collapse when the relative velocity is
large. Since our model is not expected to be accurate

during this phase of the motion where one would
expect signi®cant departures from the spherical shape,
errors of a few percent are of no great concern and we

made no e�ort to correct them.

4. Results

In order to validate our code, we have compared
our results with those of Wittke and Chao [4] for a
bubble condensing while stationary or translating at

constant velocity. A typical case is illustrated in
Fig. 1a, to be compared with Fig. 10b of Wittke and
Chao's paper; the results of these authors are shown

by the circles. Here, the dotted line is for a stationary
bubble and the dashed line for a constant bubble vel-
ocity corresponding to a PeÂ clet number

Pe � 2UBR�0�
DL

, �25�

of 1495; for both cases, the Jacob number is Ja � 10:
In water at 1 atm (101.33 kPa), these values of Pe and
Ja correspond to a subcooling of 3.35 K, R�0� � 1
mm, and a bubble velocity of 0.127 m/s. The solid line

shows the result when the bubble velocity varies in
time according to Eq. (11) starting from 0.127 m/s.
Following Wittke and Chao, in this ®gure, time is

expressed in units of tc de®ned in Eq. (5) which, again
for the case of water mentioned before, equals 46.2
ms. As in Wittke and Chao's paper, at t � 0, the
bubble surface is at the saturation temperature, while

T � T1 elsewhere. In all the calculations that follow
(except for Fig. 4), however, we take T�R�0�, 0� � T1:
A close inspection of our results reveals a slight

rebound in the early stages of the collapse that is
absent from Wittke and Chao's curve. The reason can
be understood by the consideration of Fig. 1b, which

shows the bubble surface temperature versus time for
the three cases of Fig. 1a. Wittke and Chao assume
the surface temperature to be at saturation for all

times, while we allow it to change in response to the
thermo-¯uid-dynamics of the process. Although Wittke

and Chao's approximation is seen to be justi®ed over
most of the collapse history, our results show that it is
not so in the early stages of the process. At ®rst, the

surface temperature drops very fast due to a strong
conductive heat loss, which causes a rapid conden-
sation and a relatively fast collapse. As this fast col-

lapse progresses, the latent heat released by the
condensation raises the surface temperature, and with
it the vapor pressure, so much that the direction of the

radial motion is temporarily reversed. Soon the surface
cools again, however, and the inward motion resumes,

Fig. 1. Panel a shows the collapse of a 1 mm-radius bubble in

water at a constant pressure of 1 atm for a subcooling of 3.35

K �Ja � 10). The dotted line is for a stationary bubble, the

dashed line for a constant translational velocity of 0.127 m/s

�Pe � 1495, We � 0:293), and the solid line for an initial

translational velocity of 0.127 m/s adjusted according to Eq.

(11) at later times; the circles are the numerical results of

Wittke and Chao [4] for the constant velocity case. The time

scale tc, de®ned in Eq. (5), equals 46.2 ms. Panel b shows the

bubble surface temperature for the three cases. At t � 0, the

bubble surface is at the saturation temperature, while T � T1
elsewhere.
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this time more slowly. As a consequence, the latent
heat can be removed from the surface su�ciently

rapidly to maintain the collapse monotonic.
Figs. 2 and 3 are two other examples corresponding

to di�erent parameter values. For Fig. 2, Pe � 2355,

Ja � 29:9 which, in water at 1 atm, would correspond
to R�0� � 1 mm, a subcooling of 10 K, a velocity of
0.2 m/s, and tc � 5:19 ms. In Fig. 3, Pe � 1236, Ja �
29:9 which, again in water at 1 atm, would correspond
to R�0� � 0:35 mm, a subcooling of 10 K, a velocity of
0.3 m/s, and tc � 0:635 ms.

The non-monotonic nature of the collapse is more
evident here. Again, in the initial stages, the collapse is
relatively strong and heat cannot be removed from the
bubble surface fast enough to keep up with the latent

heat deposited by the condensing vapor. Fig. 3b shows
the radial distribution of the liquid temperature along

di�erent directions from the wake �y � 0� to the front
stagnation point �y � p�: This picture of the tempera-
ture ®eld is taken at the instant t=tc � 0:2 marked by a

black circle in Fig. 3a, i.e. shortly after the ®rst mini-
mum of the radius. The region of heated liquid ahead
of the bubble is very thin, as expected. The thermal

wake extends much farther with a non-monotonic tem-
perature distribution due to the high surface tempera-

Fig. 3. Panel a shows the collapse of a 0.35 mm-radius bubble

in water at a constant pressure of 1 atm for a subcooling of

10 K �Ja � 29:9). The solid line is for an initial translational

velocity of 0.3 m/s �Pe�0� � 1236, We�0� � 0:534� adjusted

according to Eq. (11) at later times, while the dotted line is

for a stationary bubble; the time scale tc, de®ned in Eq. (5),

equals 0.635 ms. At t � 0, the bubble surface is at the undis-

turbed liquid temperature T1: Panel b shows the radial tem-

perature distribution around the bubble in di�erent directions

with, in ascending order, y � 180, 60, 30, 15, and 08; y � 1808
points ahead of the bubble where y � 08 is along the line of

symmetry of the thermal wake. This picture of the tempera-

ture ®eld is taken at the instant t=tc � 0:2 marked by a black

circle in panel a.

Fig. 2. Panel a shows the collapse of a 1 mm-radius bubble in

water at a constant pressure of 1 atm for a subcooling of 10

K �Ja � 29:9). The dotted line is for a stationary bubble, the

dashed line for a constant translational velocity of 0.2 m/s

�Pe � 2355, We � 0:678), and the solid line for an initial

translational velocity of 0.2 m/s adjusted according to Eq.

(11) at later times; the time scale tc, de®ned in Eq. (5), equals

5.19 ms. Panel b shows the bubble surface temperature for

the three cases. At t � 0, the bubble surface is at the undis-

turbed liquid temperature T1:
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ture around the time of the preceding radius minimum
around t=tc ' 0:113:
Although qualitative experimental evidence for this

non-monotonic mode of collapse is well established
(see, e.g., Refs. [3,10]), it should be noted that its

details are strongly dependent on the liquid tempera-
ture ®eld surrounding the bubble at t � 0: If one
assumes T � T1 everywhere in the liquid, a very rapid

initial condensation takes place, which is responsible
for the non-monotonic collapse as explained before.
Experimentally, this situation can only be approached

by subjecting a bubble, in saturated conditions, to a
step pressure change. Any other procedure would
necessarily build up a temperature distribution around
the bubble with a strong e�ect on the collapse history.

As an example, we show in Fig. 4 the collapse for an
initial liquid temperature distribution given, for
RRrRR� d, by

T�r, 0� � T1 � �Tsat ÿ T1�
�
1ÿ rÿ R�0�

d

� 2

, �26�

while T � T1 for R� dRr: The lines are, in ascending
order, for d=R�0� � 0, 0.1, and 0.5. This calculation

simulates the collapse of a 1 mm-radius bubble in etha-
nol with a subcooling of 31.6 K, a constant relative
velocity of 0.28 m/s at a pressure of 1 bar; the dimen-
sionless parameters have values Pe � 7113, Ja � 47:5,
m=rLDL � 12:6: The behavior for d � 0 is strikingly
di�erent from that of the other two cases (with the sur-
face temperature actually becoming so large as to in-

validate our approximation of a constant latent heat).

The results with d=R�0� � 0:1 approximately match the
data of Chen as reported in Fig. 5 of Gumerov [9] and

Gumerov's theory. To facilitate the comparison with
Gumerov, here we non-dimensionalize the time by t 0 �
Ja 2DLt=R�0� 2 � �p=4��t=tc�; numerically, �4=p�tc � 3:18
ms. Clearly, an even better ®t could be obtained by
suitably adjusting the value of d: This remark illus-
trates the di�culties that exist in attempting a com-

parison of theory and experiment. For example, Chen
and Mayinger [10] generated bubbles by blowing (at
an unspeci®ed rate) saturated vapor from a nozzle into

various degassed liquids. In these conditions, as the
bubble grows, some vapor condenses and preheats the
liquid so that, when the bubble detaches and starts
condensing, the precise temperature distribution is not

well known. A substantial heated layer around the
bubble is quite evident in their pictures.
It is seen by comparing the solid lines with the

dashed ones in Figs. 1 and 2 that, when the relative
velocity is calculated according to Eq. (11) (with
dP=dx � 0), the velocity increases with time so that the

e�ect of convection is stronger and the collapse time
reduced.
The momentum equation (11) is correct for a spheri-

cal bubble, which implies a su�ciently small value of
the Weber number

We � rLV
2
RR�0�
s

: �27�

For high bubble velocities or in a ¯uid with a small
surface tension, this condition will be violated and the
bubble becomes distorted [31]. The e�ect is an increase

of the added mass coe�cient (see, e.g., Refs. [32,33])
which counters the decreasing volume and tends to
limit the bubble acceleration. This is, for instance, the
situation in some of the experiments of Chen and

Mayinger with Refrigerant 113, which has a surface
tension of only 13.7 � 10ÿ3 N/m. Even in that case,
however, a strong acceleration is quite evident near the

end of the collapse (see their Fig. 9). For the cases of
Figs. 1±3, the initial values of the Weber number are
0.293, 0.678, and 0.534 respectively, and, therefore, the

spherical approximation is justi®ed at least over a
good portion of the collapse [10]. On the other hand,
for the ethyl alcohol case of Fig. 4, the initial value of
We is 2.94, and therefore, most likely, the bubble fairly

distorted.
Let us now consider the behavior of a bubble carried

in a region of increasing pressure. To model this situ-

ation, we use the relations (14)±(16) of Section 2. In all
the cases, pressure far upstream is P1 � 1 atm (101.33
kPa); and at the initial instant, the bubble is released

with the same local velocity as the liquid so that the
relative velocity vanishes at t � 0:
Fig. 5 show the radius and position versus time for

Fig. 4. E�ect of the initial temperature distribution, given by

Eq. (26), on the collapse of a 1 mm-radius bubble in ethanol

with a subcooling of 31.6 K at 1 bar �Ja � 47:5� and a con-

stant velocity of 0.28 m/s �Pe � 7113, We � 2:94). The lines

are, in ascending order, for d=R�0� � 0, 0.1, and 0.5. Here,

the dimensionless time is de®ned by

t 0 � Ja 2DLt=R�0� 2 � �p=4��t=tc� and �4=p�tc ' 3:18 ms.
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a bubble with an initial radius R�0� � 1 mm with an
upstream liquid velocity U1 � 1 m/s in saturated con-

ditions �T1 � 373:15 K) for a � 0:15: The dashed lines
are for ` � 10 mm, the solid lines for ` � 100 mm, and
the dotted line for a bubble stationary with respect to

the liquid. The bubble is released from x�0� � ÿ`,
where the ambient pressure is 101.37 kPa, and there-
fore, the liquid slightly subcooled. When combined

with the surface tension overpressure of 0.118 kPa, the
e�ect is to promote the bubble collapse. The dotted
line shows that in these conditions, the collapse would

be very slow in the absence of a relative velocity. The
situation for the bubble convected into the increasing
pressure region is, however, quite di�erent: the bubble
acquires a negative velocity relative to the liquid,

which is ampli®ed due to conservation of impulse. As

a consequence, the heat transfer at the bubble surface
markedly increases and the collapse is far more rapid.

As Fig. 5b shows, for ` � 10 mm, this negative vel-
ocity becomes so large that the bubble actually ends
up translating upstream. Due to the assumption of

sphericity, in the present calculation, the relative vel-
ocity becomes unrealistically large in the late stages of
the collapse. Nevertheless, the tendency for the bubble

to be repelled by the increasing pressure and for the
rate of collapse to be increased may be expected to be
robust, realistic predictions. For the milder pressure

gradient with ` � 100 mm, both e�ects are less marked
but nevertheless present.
Results of the same calculations in the presence of a

liquid subcooling of 1 K are shown in Fig. 6. Now the

collapse is faster and the bubble has less time to pick
up a relative velocity with respect to the liquid under
the action of the adverse pressure gradient. As a conse-

quence, the e�ect of the adverse pressure gradient is
smaller.
When moving in the direction of an adverse pressure

gradient, there is a curious situation that can be

Fig. 6. As in Fig. 5, but with the liquid 1 K colder,

T1 � 372:15 K.

Fig. 5. Radius (panel a) and position (panel b) versus time for

a 1 mm-radius bubble in water convected into a region of

increasing pressure as given by Eqs. (14)±(16). The liquid tem-

perature is 373.15 K and the upstream liquid velocity and

pressure 1 m/s and 1 atm respectively; the parameter a of Eq.

(14) has the value 0.15. The dashed lines are for ` � 10 mm,

the solid lines for ` � 100 mm, and the dotted line for a

bubble stationary with respect to the liquid. The bubble is

released at x�0� � ÿ` with the same velocity as the liquid.
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encountered in which the bubble remains trapped at a
®xed location in the ¯ow. If UB and dUB=dt are set to

zero in the bubble equation of motion (11), it is found
that the equation will be satis®ed provided that

1

2
CDUL � ÿ2

3
R

dUL

dx
ÿ 2

dR

dt
: �28�

Suppose the last term is unimportant. Then, since
UL > 0, for suitable UL�x�, a balance is possible if

dUL=dx < 0, i.e. dP=dx > 0: A linearization of the
equation about this ®xed point reveals a damped oscil-
latory motion. If the bubble grows (but still with negli-
gible UB and dUB=dt), the last term of Eq. (28) will be

negative and can be so large as to change the sign of
the entire right-hand side. In these conditions, no equi-
librium exists and the bubble will be swept down-

stream with the ¯ow. Conversely, if the bubble
collapses, the right-hand side of Eq. (28) becomes

more positive and the bubble has to drift in the direc-
tion of increasing UL, i.e. upstream. It is evident, how-

ever, that it will be possible to satisfy the equation
only up to a maximum collapse velocity. For larger
collapse velocities, there is no equilibrium position and

the bubble keeps moving upstream until the collapse is
completed.
Examples of these behaviors are shown in Fig. 7

with R�0� � 1 mm, ` � 10 mm, a � 0:15, U1 � 1 m/s.
Fig. 7a shows the radius versus time, while Fig. 7b
shows the bubble position versus time with the lines

corresponding, in ascending order, to
T1 � 373:18, 373:20, 373:22, and 373.32 K. For the
largest superheat, the bubble grows fast enough to be
swept downstream. For T1 � 373:22, the bubble exe-

cutes damped oscillations around a ®xed position

Fig. 8. Radius (panel a) and position (panel b) versus time for

a 10 mm-radius bubble in water convected into a region of

decreasing pressure as given by Eqs. (14)±(16). The liquid

temperature is 372.15 K and the upstream liquid velocity and

pressure 1 m/s and 1 atm, respectively; the parameter a of Eq.

(14) has the value ÿ0.15. The dashed lines are for ` � 10 mm,

the solid lines for ` � 100 mm, and the dotted line for a

bubble stationary with respect to the liquid. The bubble is

released at x�0� � ÿ` with the same velocity as the liquid.

Fig. 7. Radius (panel a) and position (panel b) versus time for

1 mm-radius bubbles in water convected into a region of

increasing pressure as given by Eq. (14)±(16), with upstream

liquid velocity and pressure of 1 m/s and 1 atm, respectively;

here ` � 10 mm and a � 0:15: The liquid temperature is, in

ascending order, 373.18, 373.20, 373.22, and 373.32 K.
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while growing slowly. Cooling the liquid by 0.02 K, is
su�cient to cause the bubble to collapse while execut-

ing translational oscillations. A further decrease of the
liquid temperature by another 0.02 K causes a collapse
with the bubble ending up monotonically translating

upstream. As illustrated in this example, the limit on
dR=dt for equilibrium to be possible is quite stringent
and can only be satis®ed for very small superheats.

In a real situation, where the ¯ow is three-dimen-
sional and the bubble is allowed to move laterally, the
quasi-equilibrium situation just discussed would prob-

ably not be easy to observe. The fact, however,
remains that an adverse pressure gradient tends to
repel the bubble, and that the e�ectiveness of this
repulsion is increased by condensation and decreased

by growth.

A contracting nozzle is considered in Figs. 8 and 9.
Fig. 8a and b are for an initial radius R�0� � 1 mm in

an upstream velocity U1 � 1 m/s in liquid subcooled
by 1 K, with a � ÿ0:15: The dashed lines are for ` �
10 mm and the solid lines for ` � 100 mm; the dotted

line is for no relative motion as before. The favorable
pressure gradient causes the relative velocity to be
positive, so that the bubble leads the liquid. The pos-

ition versus time shown in Fig. 8b indicates a nearly
constant velocity in the early stages, where the bubble
is essentially convected with the stream, followed by a

strong acceleration as the relative velocity is ampli®ed
by the radius decrease.
The bubble response can be very di�erent with a

stronger favorable pressure gradient, the e�ects of

which are shown in Fig. 9 for R�0� � 1 mm, in liquid
subcooled by 1 K, but now with U1 � 2 m/s and a �
ÿ0:3: With L � 100 mm (solid lines), the bubble re-

sponse is similar to that of the previous case. However,
if the pressure gradient is stronger �` � 10 mm, dashed
lines), the liquid becomes saturated at x=` � 1:06 and

is superheated further downstream. Thus, the bubble
starts collapsing upstream of x=` � 1:06 but, as the
ambient liquid becomes supersaturated, the collapse is

reversed and it begins to grow. Eq. (11) shows that, in
this case, there is a tendency for the relative velocity to
decrease and indeed Fig. 9b shows the bubble velocity
ending up close to the downstream liquid U1�1ÿ
a�=�1� a� ' 3:71 m/s.

5. Conclusions

We have examined the behavior of a vapor bubble
immersed in a liquid ¯ow in which velocity and press-
ure are spatially non-uniform. Because of the density
di�erence between liquid and vapor, the pressure

gradient causes the bubble to acquire a relative velocity
with respect to the liquid with signi®cant e�ects on
heat transfer and radial dynamics. Due to the tendency

of the system to conserve impulse, this relative velocity
is ampli®ed when the bubble collapses and reduced
when it expands. As a consequence, the bubble's ten-

dency to avoid high pressures and move toward low
pressures is magni®ed in the former case and reduced
in the latter.
In spite of several idealizations (inviscid ¯ow, spheri-

cal bubble), the tendencies elucidated by the model
may be expected to be qualitatively robust and could
be of practical value for the management of vapor

bubbles in microgravity conditions and other situ-
ations. A bubble that would only collapse slowly at
rest with respect to the liquid, can be made to con-

dense much faster by inducing a relative velocity by
means of a pressure gradient. For example, ¯ow
through an expansion downstream of a boiling region

Fig. 9. Radius (panel a) and position (panel b) versus time for

a 1 mm-radius bubble in water convected into a region of

decreasing pressure as given by Eqs. (14)±(16). The liquid

temperature is 372.15 K and the upstream liquid velocity and

pressure 2 m/s and 1 atm, respectively; the parameter a of Eq.

(14) has the value ÿ0.3. The dashed lines are for ` � 10 mm,

the solid lines for ` � 100 mm, and the dotted line for a

bubble stationary with respect to the liquid. The bubble is

released at x�0� � ÿ` with the same velocity as the liquid.
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may signi®cantly decrease the quality of a two-phase
liquid±vapor mixture.
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